Structure-function Studies of the Mammalian Peroxisomal Multifunctional Enzyme Type 2 (mfe-2)

نویسندگان

  • ANTTI HAAPALAINEN
  • Tuomo Glumoff
  • Sarah Butcher
  • Matti Poutanen
چکیده

Mammalian peroxisomes contain two parallel multifunctional enzymes (MFE), MFE type 1 and MFE type 2 (MFE-2), which are responsible for the degradation of fatty acids. They both catalyze the second and third reactions of the β-oxidation pathway, but through reciprocal stereochemical courses. MFE-2 possesses (2E)-enoyl-CoA hydratase-2 and (3R)-hydroxyacyl-CoA dehydrogenase activities. In addition, the carboxy-terminal part is similar to the sterol carrier protein type 2 (SCP-2). The purpose of this work was to study the structure-function relationship of functional domains of mammalian MFE-2 by recombinant DNA technology, enzyme kinetics and X-ray crystallography. The work started with the identification of conserved regions in MFE-2. This information was utilized when dehydrogenase, hydratase-2 and/or SCP-2-like domain were produced as separate recombinant proteins. Subsequently, both dehydrogenase and SCP-2-like domains were crystallized and their crystal structures were solved. The structure of the dehydrogenase region of rat MFE-2 contains the basic α/β short-chain alcohol dehydrogenase/reductase (SDR) fold and the four-helix bundle at the dimer interface, which is typical of dimeric SDR enzymes. However, the structure has a novel carboxy-terminal domain not seen among the known structures. This domain lines the active site cavity of the neighbouring monomer, reflecting cooperative behaviour within a homodimer. The monomeric SCP-2-like domain of human MFE-2 has the same fold as rabbit SCP-2. The structure includes a hydrophobic tunnel occupied by an ordered Triton X-100 molecule, demonstrating the ligand-binding site. Compared to the unliganded rabbit SCP-2 structure, the position of the carboxy-terminal helix is different. The movement of this helix in the liganded human SCP-2-like domain resulted in the exposure of a peroxisomal targeting signal, suggesting ligandassisted protein import into peroxisomes. The roles of conserved protic residues in the hydratase-2 region of human MFE-2 were studied by mutating them to alanine. In the first step, the ability of mutated variants to utilize oleic acid in vivo was tested with Saccharomyces cerevisiae fox-2 cells (devoid of endogenous MFE-2). Subsequently, in vitro characterization of the mutant enzymes revealed two amino acid residues, Glu366 and Asp510, vital for hydratase-2 activity. The results indicate that the acid-base catalysis is valid for

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Peroxisomal multifunctional enzyme type 2 from the fruitfly: dehydrogenase and hydratase act as separate entities, as revealed by structure and kinetics.

All of the peroxisomal β-oxidation pathways characterized thus far house at least one MFE (multifunctional enzyme) catalysing two out of four reactions of the spiral. MFE type 2 proteins from various species display great variation in domain composition and predicted substrate preference. The gene CG3415 encodes for Drosophila melanogaster MFE-2 (DmMFE-2), complements the Saccharomyces cerevisi...

متن کامل

Substrate specificities of peroxisomal members of short-chain alcohol dehydrogenase superfamily: expression and characterization of dehydrogenase part of Candida tropicalis multifunctional enzyme.

In addition to several other enzymes, the short-chain alcohol dehydrogenase superfamily includes a group of peroxisomal multifunctional enzymes involved in fatty acid and cholesterol side-chain beta-oxidation. Mammalian peroxisomal multifunctional enzyme type 2 (perMFE-2) is a 2-enoyl-CoA hydratase-2/(R)-3-hydroxyacyl-CoA dehydrogenase. As has been shown previously, perMFE-2 hydrates (24E)-3alp...

متن کامل

Peroxisomal multifunctional enzyme of beta-oxidation metabolizing D-3-hydroxyacyl-CoA esters in rat liver: molecular cloning, expression and characterization.

In the present study we have cloned and characterized a novel rat peroxisomal multifunctional enzyme (MFE) named perMFE-II. The purified 2-enoyl-CoA hydratase 2 with an M(r) of 31500 from rat liver [Malila, Siivari, Mäkelä, Jalonen, Latipää, Kunau and Hiltunen (1993) J. Biol. Chem. 268, 21578-21585] was subjected to tryptic fragmentation and the resulting peptides were isolated and sequenced. S...

متن کامل

On the Molecular Basis of D-Bifunctional Protein Deficiency Type III

Molecular basis of D-bifunctional protein (D-BP) deficiency was studied with wild type and five disease-causing variants of 3R-hydroxyacyl-CoA dehydrogenase fragment of the human MFE-2 (multifunctional enzyme type 2) protein. Complementation analysis in vivo in yeast and in vitro enzyme kinetic and stability determinants as well as in silico stability and structural fluctuation calculations wer...

متن کامل

Peroxisomal β-oxidation—A metabolic pathway with multiple functions

Fatty acid degradation in most organisms occurs primarily via the β-oxidation cycle. In mammals, β-oxidation occurs in both mitochondria and peroxisomes, whereas plants and most fungi harbor the β-oxidation cycle only in the peroxisomes. Although several of the enzymes participating in this pathway in both organelles are similar, some distinct physiological roles have been uncovered. Recent adv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002